

General data

Company

Ingenostrum

Date

29/06/2022

The aim of BIOGAS3 project is to promote the sustainable production of renewable energy from the biogas obtained of agricultural residues and food and beverage industry waste in small-scale concept for energy self-suffiency. This project is co-funded by the Intelligent Energy Europe Programme of the European Union, Contract N°:IEE/13/SI2.675801.

smallBIOGAS is a software tool to develop economic and sustainability analysis in order to evaluate the viability of small-scale anaerobic digestion installations (ca. or less than 100 kWel; 372308 m3biogas/year, 65% CH4). The tool is adapted to the conditions of all participating countries of the project (France, Germany, Ireland, Italy, Poland, Spain and Sweden).

The results obtained from the use of this calculation tool are intended to provide the user with a guide about the viability of a small-scale biogas plant. The authors recommend further consultation with expert centres before investing in any biogas facility. The authors and promoters of this software tool accept no responsibility for any damages resulting from the use made of the tool smallBIOGAS.

Input from user

Output from smallBIOGAS tool

Location data

Country	Spain	
Administrative division	Andalucía Huelva	
Annual average temperature	18,1	°C
Percentage of wastes located at a distance equal or less than 10 km	0	%
from the agro-food company		
Percentage of wastes located at a distance higher than 10 km from	100	%
the agro-food company		

Biogas production process data

Anaerobic digestion process	Wet	
Annual amount of waste introduced in the digester (fresh matter)	5.000,00	t/year
Annual amount of waste introduced in the digester (dry matter)	4.580,00	t/year
Annual amount of waste introduced in the digester (dry organic matter)	3.847,20	t/year
Annual amount of organic matter degraded	2.419,89	t/year
Needs of dilution water (only for wet digestion processes)	20.785,71	m3/year
Digestate recirculation rate	24,68	%
Needs of waste in terms of dry matter to concentrate (only for dry digestion)	0	t/year
Total amount of digestate produced (fresh matter)	23.206,59	t/year
Volume of anaerobic digester	4.897,80	m³
Hydraulic retention time	53,18	days
Thermal energy required for the heating of the anaerobic digester	887,55	MWh/year
Gross methane production (annual)	869.467,20	Nm3/year
Gross biogas production (annual)	1.625.172,34	Nm3/year
Gross biogas production (average per hour)	185,52	Nm3/h
Excessive digestate recirculation (if recirculation rate is >30%)	No	
Ammonia inhibition risk	No	
C/N ratio out of range	C/N too high (80)	

Use of the biogas 1 (Biomethane)

Data of the biogas valorisation system

Use of biogas in	Biomethane	
Use of produced electric energy	No	
Use of produced thermal energy	No	
Use of produced biomethane	Injection into gas grid	
Needs of thermal energy near to the biogas plant	2.000,00	MWh/year
Needs of electric energy near to the biogas plant	0,00	MWh/year
Thermal energy in the biomethane obtained	9.616,31	MWh/year
Losses of energy in the purification process	1.394,36	MWh/year
Thermal output energy of the purifier	8.221,94	MWh/year
Biomethane output flow rate of the purifier	92,92	Nm³CH4/h
Installed capacity of the purifier	97,57	Nm³CH4/h
Higher heating power of the biomethane produced	8.057,50	MWh/year
Annual net amount of biomethane produced	728.526,57	Nm3/year
Flow rate of biomethane produced	91,07	Nm³CH4/h
Investment in biomethane system	505.989,19	€
Income due to biomethane sale	684.887,83	€/year

Economic viability analysis. Investment project

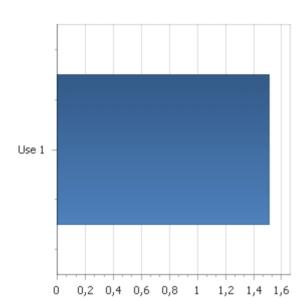
Investment	1.509.164,00	€
Diames wheat	4 000 474 04	
Biogas plant	1.003.174,81	€
Biogas valorisation system	505.989,19	€
Other	0,00	€
Income	754.971,72	€/year
Sale of Biomethane	684.887,83	€/year
Energy savings	0,00	€/year
Waste management	0,00	€/year
Other incomes	0,00	€/year
Sale or saving (sale or use) of digestate	70.083,89	€/year
Selling price of electric energy	0,00	c€/kWh
Selling price of thermal energy	0,00	c€/kWh
Selling price of biomethane	8,50	c€/kWh
Expenses	194.864,34	€/year
Operating and maintenance (O&M)	150.994,34	€/year
Staff	3.870,00	€/year
Transport and handling of waste	40.000,00	€/year
Cost of waste (co-substrates)	0,00	€
Transport of digestate	0,00	€
Other expenses	0,00	€/year
O&M as percentage of the sale of products and energy savings	20,00	%
Labour intensity	0,0002	h/t·d
Labour cost	15,00	€/h
	-,	
Days worked per year	258,00	working day

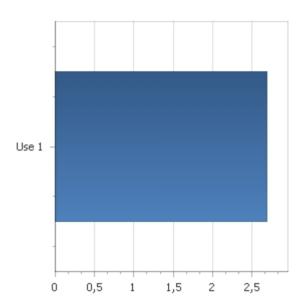
Economic viability analysis. Financial study of the investment project.

Financing	1.509.164,00	€
Subsidies	0,00	€
Own funding	754.582,00	€
Loans	754.582,00	€
Percentage of subsidies	0,00	%
Percentage of own funding	50,00	%
Percentage of loan	50,00	%
Interest rate of loan	4,70	%
Financial indicators		
Gross operating profit or earnings before interest, taxes,	560.107,37	€/yea
depreciation and amortization (EBITDA)		
Net present value (NPV)	4.138.421,50	€
NPV/initial investment	2,742	-
Internal return rate (IRR)	27,31	%
Payback period	2,69	years
Weighted Average Cost of Capital (WACC)	7,64	%
Capital Recovery Factor (CRF)	9,92	%

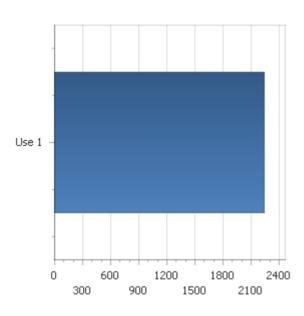
Environmental viability analysis

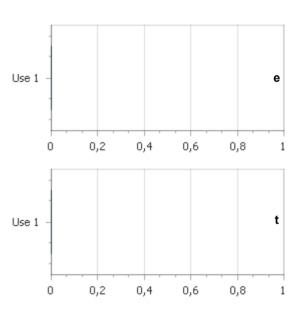
Primary energy obtained from the recovery of the biogas	8.057,50	MWh/year
Savings of CO2 emissions	2.239,99	t/year
Savings of CO2 emissions		
Savings in artificial fertilizers	24000	kgN/year
Utilization of the digestate in	Vulnerable area	
Cultivation area required for application of digestate	141,18	ha





Overview




Payback period (years)

CO2-eq emissions savings (t/year)

Self-consumed energy (%)

The sole responsibility for the content of this report lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein

©AINIA ©BIOGAS3

